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We show that piston fluctuations are of crucial importance in the analysis of a 
Szilard engine. Some engines which do not require information in order to 
perform a Szilard cycle actually do not work. We pinpoint the mechanism and 
stages which require work investment when a measuring instrument is reset. 

1. SZILARD'S D E M O N  

In a classical paper, Szilard (1929) presented several examples which 
show that additional information about a system yields a decrease in the 
entropy of that system. His simplest and most popular example is an engine 
which will be described in the following. (The present engine is equivalent 
to Szilard's when piston fluctuations are ignored, but is heater when they 
are considered.) 

Figure la represents a cylinder divided by a rigid wall into two cells 
of maximal volume v each, which is in thermal contact with a heat reservoir 
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Fig. 1. Two Szilard engines. 
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at temperature T. A single molecule is located in the cylinder and a valve 
may either permit or impede the molecule from crossing the wall. The 
cylinder is bounded by two movable pistons. At state 1 the valve is open 
and the molecule can move through the whole volume 2v. At state 2 the 
valve is dosed and a measurement is performed, so that the engine knows 
in which cell the molecule is located. At stage [2~3] the empty cell is 
compressed by an infinitesimal applied force. Since there is no internal 
pressure to oppose compression, this stage requires no work. At stage [3 ~ 4] 
the valve is opened and at stage [4-~ 1] the internal pressure pushes the 
piston outward, performing positive work. The work performed in the 
entire cycle is positive, in apparent contradiction with the second law of 
thermodynamics. 

The mechanism which leads to this entropy decrease has been called 
"Szilard's demon" and many physicists have claimed to have "exorcised" 
it. However, different authors use diiierent explanations to make this 
thought-experiment comply with the accepted result that overall entropy 
cannot decrease. Jauch and Bfiron (1972) claimed that information gain 
should not be identified with entropy decrease. This view was rebutted by 
Costa de Beauregard and Tribus (1974). Brillouin (1962) and Gabor (1961) 
claimed that there is an entropy cost for acquiring information. Landauer 
(1961, 1971, 1988, 1989) and Bennett (1982, 1987) interpret measurement 
as copying the state of the measured system into the corresponding state 
of the measuring instrument, which must initially be in a standard state. 
They devised a procedure for dissipationless measurement and therefore 
concluded that there is a price for erasing information. Lubkin (1987) and 
Zurek (1986) discuss quantum aspects of Szilard's problem. 

At present, it seems that the view of Landauer and of Bennett has 
become the orthodox view of the physics community and the conundrum 
has come to its end. Landauer (1989) writes: 

Szilard reaffirmed belief in the second law, and that the measurement process, 
in some overall sense, requires energy dissipation. Szilard, however, did not pin 
down the exact source of the dissipation, within a measurement cycle. We now 
know, from analysis of the computational process, that resetting of the meter 
requires energy dissipation, and for Maxwell's demon this is enough to save the 
second law. Authors following Szilard, however, did not understand that, and 
looked for dissipation in the step in which information is transferred from the 
object to be measured to the meter. Brillouin, Gabor, and others found dissipative 
ways of transferring information, and without further justification, assumed that 
they had discovered a minimally dissipative process. It is one of the great puzzles 
in the sociology of science why this obviously inadequate argument met with 
wide and uncritical acceptance. 

In spite of this categorical statement, Landauer and Bennett betray 
their own philosophy when they jump to the conclusion that there is an 
entropy cost for erasing information: they nowhere provide an explicit 
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argument which shows that mechanical energy has to be invested in erasure, 
but rather use the premise that, since entropy cannot decrease, this cost has 
to exist. 

In an attempt to clarify things, I discuss some aspects which have not 
been considered previously. I question whether it is essential to perform 
measurements in order to operate Szilard's engine. I evaluate exactly the 
influence of fluctuations and propose an engine which is simpler than 
Szilard's. For this simple engine it is clearly seen why resetting requires work. 

2. DISSIPATIONLESS ERASURE? 

The following argument is transcribed from Bennett's (1982) proof that 
a measurement can be reversible and we could expect it to be as valid here 
as it was in its original context. Let us consider erasure of a one.bit movable 
element which is forced to assume one of the two possibilities which are 
favored by a bistable potential (two minima separated by a barrier consider- 
ably higher than kT). A physical example could be a single-domain ferro- 
electric particle which has a preferred axis due to either geometric or 
crystalline anisotropy. This particle is represented in Figure 2a and the 
corresponding bistable potential as a function of the orientation angle is 
drawn in Figure 2b. 

The element is initially at position 1 and its polarization is arbitrary. 
To perform the erasure operation, this element is slowly brought into a 
region where a standard field exists. During the first part of the operation 
(positions 1 to 4), the element is forced to move parallel to its preferred 
axis (possibly along a narrow tube). During this part of the operation, the 
element passes through a region where a transverse field is found, which 
is strong enough to render the orientation potential unistable. This situation 
is depicted by position 2. From then on, the initial polarization of the 

i 8 8 

o 

+ + + + + 

b 

@ 
STANDARD 

Fig. 2. Erasure of  a movable bit. The bit is moved from 1 to 4. (a) In this figure a negative 
charge is the source of  the standard field. The work performed on the bit and its final polarization 
do not depend on its initial polarization. (b) For the respective places, the dipolar energy and 
probability density as functions of  polarization direction. 



988 Berger 

element becomes irrelevant. As the movable bit leaves the region of strong 
transverse field, the orientation potential is biased by the standard field 
(position 3). The contribution of the standard field to the orientation 
potential is considerably greater than kT when the bit reaches position 3, 
though negligible before it reaches position 2. (This can be achieved if the 
transverse-field region is long enough.) Therefore, when the bit leaves the 
transverse-field region (position 4), it is almost certain that it has the standard 
polarization. Finally, the bit is brought back from position 4 to position 1, 
but this time along a path which avoids the transverse-field region. 

Summing up, the polarization of the bit, which was initially arbitrary 
and possibly unknown, has been set into a controllable standard direction. 
In order to perform this operation, we have to apply an external force which 
slightly overcomes the forces exerted by the reservoir and by the electric 
fields. The interaction with the reservoir is essential in order to stabilize the 
polarization direction, but we assume that it does not exert a net translational 
force on the movable element. Since electrostatic forces are conservative 
and since for quasistatic motion the force acting on the element is, in 
principle, a predictable function of its position only, the entire operation 
can be performed by investing an arbitrarily small amount of work. 

We shall criticize this conclusion in our last section. 

3. A SZILARD CYCLE WITHOUT MEASUREMENT 

Following Bennett (1982, 1987) and our previous section, we might be 
tempted to think that the measuring stage is in fact unessential and try to 
devise a Szilard engine in which this stage does not exist. 

This seems to be feasible since, in order to perform the stage [2 o 3] 
in Figure la, it appears to be unessential to know in which cell the molecule 
is located. We could as well apply a slight pressure (as compared to kT/v) 
at both sides of the cylinder. The empty cell would then collapse completely, 
whereas the cell with the molecule in it would just contract to a new volume 
v '~- v. The work performed by this engine would be kTln(v'/v) in stage 
[2o3],  kTln(2v/v') in stage [4~ 1], and kT In 2 in the entire cycle, as in 
the original engine described in section 1. 

An additional possibility is provided by Popper's engine (Rothstein, 
1964). We immediately see from Figure 3 that the shaft will be driven 
counterclockwise and could be used to raise a weight, regardless of the side 
at which the molecule is trapped. 

In this way we have gotten rid of measurement, registering, erasure, 
and all their philosophical burden; the contradiction to the second law is 
now neat and plain. However, a more careful analysis shows that the 
conclusions of this section are incorrect. 
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Fig. 3. Popper's engine. The cylinder is fixed in its place and its temperature is constant. The 
piston, as usual, comprises the entire movable complex. It should also have a "valve" (not 
shown in the figure) to permit skipping the molecule during the appropriate stage. The shaft 
can rotate around its fixed axis. 

4. THE EFFECT OF FLUCTUATIONS 

The descriptions and calculations of  Sections 1 and 3 ignore the 
fluctuations of  the pistons, which will now be considered. 

The force applied on the pistons (external pressure) can be precisely 
controlled. For instance, we could assume that the pistons are attached to 
electric charges which are pulled by infinitesimal charged layers which are 
brought to some appropriate place. However, the positions of the pistons 
cannot be precisely controlled. The pistons must be free to move, otherwise 
they will not be able to recoil and absorb energy from the molecule. Note 
that in this context the concept "piston" includes all the objects which are 
rigidly attached to it for the purpose of  translating its motion into mechanical 
work. The piston-molecule collisions are precisely what is meant by thermal 
contact. Therefore,  the piston will be at temperature T and, for any given 
external pressure, its position will fluctuate accordingly. Once a piston is 
allowed to move, we lose the information on its position (unless we measure 
it, and this is not easier than measuring the position of the molecule). 

Taking these position fluctuations into account, we shall now calculate 
the average work performed by the engines in the previous section. When 
we use the word "work,"  we mean the work performed against the external 
pressure, which can be stored as potential energy. 

Let us begin with the symmetric-pressure engine of  Figure la. Consider 
first the stage [2--> 3] with the valve closed. Let us denote by vN the volume 
of  the cell which contains N molecules. (In the present example, N = 0 
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or 1, but generalization is quite simple.) The work performed by the cell 
(including its piston) when its volume increases by dVN under applied 
pressure p is ttWN =p dvs. Taking the average over many cycles (at the 
same stage and pressure), we write dWN =pd~N. The volume VN is not a 
function of p, since it fluctuates; however, assuming that averaging over the 
appropriate Gibbs ensemble is equivalent to averaging over many cycles, 
tTN may be considered a function ofp. Defining the dimensionless parameters 
YN = ~ N / 0  and x =pv/kT, we write 

dwN = kTx dyN = kTx-d~ - dx (1) 
a x  

Since the temperature and the pressure are controlled, the probabilities 
for every possible volume VN are distributed according to the isobaric- 
isothermal ensemble. In dimensionless parameters, the probability PN (Y) dy 
to have y <-VN/V <--y + dy is given by 

RN(Y) OCY N e-XY (2) 

with the symbol oc meaning "proportional to." An alternative way to 
understand the distribution (2) is to regard the pressure as a force field and 
use the canonical distribution. The kinetic energy is independent of y and 
the potential energy (of the piston) is kTxy. The volume in phase space is 
proportional to yN and Boltzmann's factor to e -':r. Since VN has to be in 
the range [0, v], it follows from (2) and the definition of YN that 

yN(X)=f~yN+le -xy d y / f ~ y N e - X y d y  (3) 

It may be interesting to note that the ideal gas law, pVN = NkT, gives the 
most probable volume according to (2). The average volume is given by 
(3) and is somewhat different. 

Defining 

zN(x)-- yN e-xY dY=x__.ff. ~ l_e-X ~ ~ (4) 
i=0 

we can express (3) in the form 

YN = ZN§ = - d O n  zN)/dx (5) 

The average work ~N(xl-~ x2) performed by a cell when the pressure 
changes from kTXl/V to kTx2/v is found by integrating (1) by parts and 
using (5): 

fiN(x1--~ x2) = kT{x2yN(x2) -xlyN(xO +ln[zN(x2)/ZN(XO]} (6) 
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Let us consider now the stage [4--> 1] with the valve open. Defining 
V~ = Vo+ vl and Y~ = ~r we have that the work performed by the engine 
is now given by 

" ~ W  1 = kTx dY, = k Tx ~ dx (7) 

The probability PI(Y) d Y  to have Y<-- V~/v < - Y + d Y  is given by 

p~( y)  oc l( Y)p~( Y) (8) 

where l (Y) is the distance which both pistons are free to move as a whole, 
without changing the total volume Vo+ v~ = vY. Explicitly, 

~y 2e-XY for 0 - Y - 1  
P I ( Y ) ~  for l - Y - < 2  (9) 

Following the steps which led to (3)-(5), we now have 

Y, = - d ( l n  Z, ) /dx  (10) 

with 

Io' I ZN(x)  = yN+~ e-~g d y  + (2_ y)  yN  e-~g d y  
1 

=2[ZN+,(X)--ZN(X)]--2N+2[ZN+,(2X)--ZN(2X)] (11) 

A direct calculation shows that Z~(x)= 2Zo(X)Zl(X). From here, (5), 
and (10), it follows that 

Yl(X) = yo(X) + yx(X) (12) 

Namely, for any exerted pressure, the average volume of  the cylinder does 
not depend on whether the valve is open or closed. This statement can be 
made much stronger: it is a trivial exercise to show that, if we do not know 
at which side the molecule is, then the probability density to have volumes 
1)y L at the left and vyR at the right is proportional to 

(YL + YR) exp[--x(yL + yR)] 
both  in the case that the valve is open or dosed.  Finally, it follows from 
(1), (7), and (12) that the work delivered by the engine in the stage [4 ~  1] 
is exactly balanced by the work invested in the stage [2--> 3]. 

In summary, the work kT In 2 per cycle, which could be expected to 
be obtained by naively following Szilard's first example, is precisely canceled 
by volume fluctuations. 

The same kind of  analysis may be applied to Popper's engine. Its piston 
should have a valve for the purpose of  making it either transparent or 
impermeable to the molecule. We denote by vy the volume enclosed between 
the piston and the middle of the cylinder (y  is defined positive, no matter 
at which side the piston lies; for each value of y there are two possible 
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positions, but a unique potential energy). When the valve is open, the 
molecule is irrelevant and the probability density for a value y is proportional 
to exp( -xy)  (x is determined by the torque applied to the shaft). When the 
valve is closed, the probability for having the value y and the piston at the 
same side as the molecule is proportional to (1 - y) exp(-xy) ;  the probability 
for this same y, but with the piston at the opposite side, is (1 + y )  exp(-xy) .  
Summing the probabilities of both sides, we obtain that the probability 
density for y is proportional to exp(-xy) .  Again, the average work perfor- 
med by quasistatically changing the value of x does not depend on whether 
the valve is open or closed. 

5. A SIMPLIFIED SZILARD ENGINE 

We want to engage in devising an engine whose average volume does 
depend on whether the valve is open or closed. But we first note that, when 
pistons are allowed to fluctuate, there is no essential difference between a 
piston and a molecule. Consequently, Szilard's engine contains more mov- 
able parts than necessary or, in other words, is more complicated than 
necessary. The natural candidate is the engine described in Figure lb. It 
consists of the same cylinder as in Figure la, but this time there is no 
molecule and only one piston. The rigid wall at the middle of the cylinder 
has been replaced by a set of pins which act as a "valve," permitting or 
impeding the piston to cross it. At state 1 the valve is open. At state 2 the 
valve is closed and a measurement is performed, so that the engine knows 
at which side the piston is located. At stage [2--> 3] a quasistatically increasing 
force is applied toward the side where the piston is located. At stage [3 --> 4] 
the valve is opened and at stage [4-> 1] the force is quasistatically released. 

Defining the volume of  the engine as the volume enclosed between the 
piston and the end of the cylinder toward which the force is applied, the 
formalism developed in the previous section remains appropriate. While 
the valve is closed, Yo and wo are still given by equations (3)-(6). When the 
valve is open, we denote the average volume of the engine by v~o, with 
~ o = - d ( l n  ~o)/dx and 

fo' ~o(X) = e -xv d ~  = (1 + e-X)Zo(X) (13) 

Using (6), we find that the average work performed by the engine in 
the stages [2->3] and [4--> 1] is 

fro(0--> x) + ~ 0) = kT{x[yo(X) go(X)~o(O)/ 
-OJotX)J+lnzo(0)~o(X)] (14) 

Since yo(x)~ ~o(X), additional work kTx[~o(x)-yo(x)] is performed in 
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the stage [3 ~ 4], when the average volume increases without changing the 
external pressure, due to the opening of  the valve. From here, (14), and 
(13), the average work in the entire cycle is 

work per cycle (informed) = kT ln[2/(1 + e-X)] (15) 

For x > 0, this work is always positive. For x >> 1, it approaches kT In 2. 
We see that the same volume fluctuations which canceled the work expected 
from the previous engines are the source of  the work supply in the present 
case. 

What happens if we forgo the measurement and do not know at which 
side the piston gets t rapped? In order to answer this question, we have to 
calculate the work per cycle when the force is applied in "the wrong" sense 
(toward the middle of  the cylinder). The only necessary change in the 
analysis is the replacement of  yo(x) by 1 +yo(x). This has no effect on the 
work described by equation (14), which is sensitive only to the derivative 
of  Yo- However,  the work performed in the stage [ 3 - 4 ]  will now be 
kTx[ go(X) -yo(X) - 1]. If  no measurement is performed at state 2, then the 
force will be applied equally often either in the "right" or in the "wrong" 
sense. Therefore, the average work per cycle will be (after some re- 
arrangement) 

work per cycle (uncorrelated) = - k T  ln(cosh x/2) (16) 

This work is negative for x > 0. A negative work was expected, since in the 
stage [ 3 -  4] a constraint is released while an unbalanced force is present, 
and this is an irreversible step. 

The conclusion of  this and the previous section is that information is 
indeed the key ingredient for the performance of a "demon."  

6. DISCUSSION 

In the previous section we showed that the work performed by the 
engine in Figure lb will be positive if and only if we know at which side 
the piston is located in state 2. One way to know where the piston lies is 
to perform a measurement. Another way is to "prepare"  the engine properly. 
The way to do this is hinted by section 2. Let us assume that the piston is 
charged. Then, we have to take the engine, with its valve open, to a region 
in which an electric field exists. For an appropriate electric field, the piston 
will have different potential energies for different sides of  the cylinder. If  
this energy difference is considerably larger than kT, we can know almost 
with certainty at which side the piston is located. We then close the valve 
and withdraw the engine from the electric field. 

However, bringing the engine into an electric field is equivalent to 
bringing the sources of the field close to the engine. Therefore, "preparat ion" 
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of  the engine amounts to application of  an increasing force with the 
valve  open, followed by release of  this force with the valve closed. But 
this is precisely the almost cyclic process [1 ~ 4 ~  3-~ 2] (see Figure lb).  
Obviously, the average work which we have to invest in this process is 
nothing else than the work we expect to obtain from operation of  the engine 
[2-~ 3 ~ 4 ~  1]. 

The erasure process described in Section 2 involves the same features 
contained in the preparation process we have discussed. It is not true that 
the force acting on the movable element depends on its position only, since 
the polarization direction fluctuates. Moving the element through the trans- 
verse field is analogous to having the valve open, and skipping that field is 
analogous to having the valve closed. 

Thus, we arrive naturally at the following picture for resetting a measur- 
ing instrument from an unknown initial state: first, the instrument is set in 
interaction with a standard field. The instrument has to be in thermal contact 
with a heat bath, so as to permit damping of  the initial state and assume 
the desired standard state (which depends on the standard field only). 
During this stage, we must allow passage between the different possible 
states of  the instrument and the desired state. Second, the instrument-field 
interaction is withdrawn. At this stage, we must forbid passage to other 
possible states. Since the second stage has more constraints than the first, 
fluctuations have a different effect on the average work performed during 
each stage. As a result, these works do not cancel out; a net work has to 
be invested in the resetting process. 

So far, the second law wins. However, if we accept Bennett's (1982) 
results that both measuring and uncopying are dissipationless, the demon 
still has a chance. (Measuring and uncopying differ qualitatively from 
erasure of  an unknown state, since in these cases we know how to build a 
symmetric process such that the work vanishes separately for the constrained 
and the unconstrained stage.) All we have to do is to equip the "mind"  of  
a Szilard engine with a couple of  fixed bits (one "right" and one "left")  
for the purpose of  uncopying. Once a measurement is performed, its infor- 
mation is used for a compound action: first, the empty cell is compressed, 
and second, the register is brought toward the appropriate fixed bit and 
uncopied. In this way we can complete the cycle without paying the price 
of  erasure. It still remains to be asked whether our notions of  thermo- 
dynamics are really contradicted by the existence of a macroscopic-like 
process that yields just a microscopic amount  of  work. 
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